

I hate money

«I hate money» is a web application made to ease shared budget management.
It keeps track of who bought what, when, and for whom; and helps to settle the
bills.

I hate money is written in python, using the flask [https://palletsprojects.com/p/flask/]
framework. It’s developed with ease of use in mind, and is trying to
keep things simple. Hope you (will) like it!

Table of contents

	Installation

	Configuration

	Upgrading

	The REST API

	Security

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

Installation

We lack some knowledge about packaging to make Ihatemoney installable on mainstream
Linux distributions. If you want to give us a hand on the topic, please
check-out the issue about debian packaging [https://github.com/spiral-project/ihatemoney/issues/227].

If you are using Yunohost (a server operating system aiming to make self-hosting accessible to anyone),
you can use the Ihatemoney package [https://github.com/YunoHost-Apps/ihatemoney_ynh].

Otherwise, follow these instructions to install it manually:

Requirements

«Ihatemoney» depends on:

	Python: version 3.6 to 3.9 included will work.

	A Backend: to choose among SQLite, PostgreSQL, MariaDB (>= 10.3.2) or Memory.

	Virtual environment (recommended): python3-venv package under Debian/Ubuntu.

We recommend to use virtual environment [https://docs.python.org/3/tutorial/venv.html] but
it will work without if you prefer.

If wondering about the backend, SQLite is the simplest and will work fine for
most small to medium setups.

Note

If curious, source config templates can be found in the project git repository [https://github.com/spiral-project/ihatemoney/tree/master/ihatemoney/conf-templates].

Prepare virtual environment (recommended)

Choose an installation path, here the current user’s home directory (~).

Create a virtual environment:

python3 -m venv ~/ihatemoney
cd ~/ihatemoney

Activate the virtual environment:

source bin/activate

Note

You will have to re-issue that source command if you open a new
terminal.

Install

Install the latest release with pip:

pip install ihatemoney

Warning

The current release of ihatemoney (4.1.5) does not work with SQLAlchemy 1.4.
The dependency will be fixed in the next version, but in the meantime you
can work around the issue with: pip install 'SQLAlchemy>=1.3,<1.4'.

Test it

Once installed, you can start a test server:

ihatemoney runserver

And point your browser at http://localhost:5000.

Configure database with MariaDB (optional)

Note

Only required if you use MariaDB. Make sure to use MariaDB 10.3.2 or newer.

	Install PyMySQL dependencies. On Debian or Ubuntu, that would be:

apt install python3-dev libssl-dev

	Install PyMySQL (within your virtual environment):

pip install 'PyMySQL>=0.9,<1.1'

	Create an empty database and a database user

	Configure SQLALCHEMY_DATABASE_URI accordingly

Configure database with PostgreSQL (optional)

Note

Only required if you use Postgresql.

	Install python driver for PostgreSQL (from within your virtual environment):

pip install psycopg2

	Create the users and tables. On the command line, this looks like:

sudo -u postgres psql
postgres=# create database mydb;
postgres=# create user myuser with encrypted password 'mypass';
postgres=# grant all privileges on database mydb to myuser;

	Configure SQLALCHEMY_DATABASE_URI accordingly.

Deploy it

Now, if you want to deploy it on your own server, you have many options.
Three of them are documented at the moment.

Of course, if you want to contribute another configuration, feel free
to open a pull-request against this repository!

Whatever your installation option is…

	Initialize the ihatemoney directories:

mkdir /etc/ihatemoney /var/lib/ihatemoney

	Generate settings:

ihatemoney generate-config ihatemoney.cfg > /etc/ihatemoney/ihatemoney.cfg
chmod 740 /etc/ihatemoney/ihatemoney.cfg

You probably want to adjust /etc/ihatemoney/ihatemoney.cfg contents,
you may do it later, see Configuration.

With Apache and mod_wsgi

	Fix permissions (considering www-data is the user running apache):

chgrp www-data /etc/ihatemoney/ihatemoney.cfg
chown www-data /var/lib/ihatemoney

	Install Apache and mod_wsgi : libapache2-mod-wsgi(-py3) for Debian
based and mod_wsgi for RedHat based distributions

	Create an Apache virtual host, the command
ihatemoney generate-config apache-vhost.conf will output a good
starting point (read and adapt it).

	Activate the virtual host if needed and restart Apache

With Nginx, Gunicorn and Supervisord/systemd

Install Gunicorn:

pip install gunicorn

	Create a dedicated unix user (here called ihatemoney), required dirs, and fix permissions:

useradd ihatemoney
chown ihatemoney /var/lib/ihatemoney/
chgrp ihatemoney /etc/ihatemoney/ihatemoney.cfg

	Create gunicorn config file

ihatemoney generate-config gunicorn.conf.py > /etc/ihatemoney/gunicorn.conf.py

	Setup Supervisord or systemd

	To use Supervisord, create supervisor config file

ihatemoney generate-config supervisord.conf > /etc/supervisor/conf.d/ihatemoney.conf

	To use systemd services, create ihatemoney.service in 2:

[Unit]
Description=I hate money
Requires=network.target postgresql.service
After=network.target postgresql.service

[Service]
Type=simple
User=ihatemoney
ExecStart=%h/ihatemoney/bin/gunicorn -c /etc/ihatemoney/gunicorn.conf.py ihatemoney.wsgi:application
SyslogIdentifier=ihatemoney

[Install]
WantedBy=multi-user.target

Obviously, adapt the ExecStart path for your installation folder.

If you use SQLite as database: remove mentions of postgresql.service in ihatemoney.service.
If you use MariaDB as database: replace mentions of postgresql.service by mariadb.service in ihatemoney.service.

Then reload systemd, enable and start ihatemoney:

systemctl daemon-reload
systemctl enable ihatemoney.service
systemctl start ihatemoney.service

	Copy (and adapt) output of ihatemoney generate-config nginx.conf
with your nginx vhosts 1

	Reload nginx (and supervisord if you use it). It should be working ;)

	1

	typically, /etc/nginx/conf.d/ or
/etc/nginx/sites-available, depending on your distribution.

	2

	/etc/systemd/system/ihatemoney.service
path may change depending on your distribution.

With Docker

Build the image:

docker build -t ihatemoney .

Start a daemonized Ihatemoney container:

docker run -d -p 8000:8000 ihatemoney

Ihatemoney is now available on http://localhost:8000.

All Ihatemoney settings can be passed with -e parameters
e.g. with a secure SECRET_KEY, an external mail server and an
external database:

docker run -d -p 8000:8000 \
-e SECRET_KEY="supersecure" \
-e SQLALCHEMY_DATABASE_URI="mysql+pymysql://user:pass@172.17.0.5/ihm" \
-e MAIL_SERVER=smtp.gmail.com \
-e MAIL_PORT=465 \
-e MAIL_USERNAME=your-email@gmail.com \
-e MAIL_PASSWORD=your-password \
-e MAIL_USE_SSL=True \
ihatemoney

A volume can also be specified to persist the default database file:

docker run -d -p 8000:8000 -v /host/path/to/database:/database ihatemoney

To enable the Admin dashboard, first generate a hashed password with:

docker run -it --rm --entrypoint ihatemoney ihatemoney generate_password_hash

At the prompt, enter a password to use for the admin dashboard. The
command will print the hashed password string.

Add these additional environment variables to the docker run invocation:

-e ACTIVATE_ADMIN_DASHBOARD=True \
-e ADMIN_PASSWORD=<hashed_password_string> \

Additional gunicorn parameters can be passed using the docker CMD
parameter.
For example, use the following command to add more gunicorn workers:

docker run -d -p 8000:8000 ihatemoney -w 3

Configuration

“ihatemoney” relies on a configuration file. If you run the application for the
first time, you will need to take a few moments to configure the application
properly.

The default values given here are those for the development mode.
To know defaults on your deployed instance, simply look at your
ihatemoney.cfg file.

“Production values” are the recommended values for use in production.

Configuration files

By default, Ihatemoney loads its configuration from /etc/ihatemoney/ihatemoney.cfg.

If you need to load the configuration from a custom path, you can define the
IHATEMONEY_SETTINGS_FILE_PATH environment variable with the path to the configuration
file.
For instance

export IHATEMONEY_SETTINGS_FILE_PATH="/path/to/your/conf/file.cfg"

The path should be absolute. A relative path will be interpreted as being
inside /etc/ihatemoney/.

SQLALCHEMY_DATABASE_URI

Specifies the type of backend to use and its location. More information on the
format used can be found on the SQLAlchemy documentation [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls].

	Default value: sqlite:///tmp/ihatemoney.db

	Production value: Set it to some path on your disk. Typically
sqlite:///home/ihatemoney/ihatemoney.db. Do not store it under
/tmp as this folder is cleared at each boot.

For example, if you’re using MariaDB, use a configuration similar to the following:

SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://user:pass@localhost/mydb'

If you’re using PostgreSQL, your client must use utf8. Unfortunately,
PostgreSQL default is to use ASCII. Either change your client settings,
or specify the encoding by appending ?client_encoding=utf8 to the
connection string. This will look like:

SQLALCHEMY_DATABASE_URI = 'postgresql://myuser:mypass@localhost/mydb?client_encoding=utf8'

SECRET_KEY

The secret key used to encrypt cookies and generate secure tokens. They are used
to authenticate access to projects, both through the web interface and through the API.

As such, you should never use a predictible secret key: an attacker with the knowledge
of the secret key could easily access any project and bypass the private code verification.

	Production value: ihatemoney conf-example ihatemoney.cfg sets it to
something random, which is good.

SESSION_COOKIE_SECURE

A boolean that controls whether the session cookie will be marked “secure”.
If this is the case, browsers will refuse to send the session cookie over plain HTTP.

	Default value: True

	Production value: True if you run your service over HTTPS, False if you run
your service over plain HTTP.

Note: this setting is actually interpreted by Flask, see the
Flask documentation [https://flask.palletsprojects.com/en/2.0.x/config/#SESSION_COOKIE_SECURE] for details.

MAIL_DEFAULT_SENDER

A python tuple describing the name and email address to use when sending
emails.

	Default value: ("Budget manager", "budget@notmyidea.org")

	Production value: Any tuple you want.

ACTIVATE_DEMO_PROJECT

If set to True, a demo project will be available on the frontpage.

	Default value: True

	Production value: Usually, you will want to set it to False for a
private instance.

ADMIN_PASSWORD

Hashed password to access protected endpoints. If left empty, all
administrative tasks are disabled.

	Default value: "" (empty string)

	Production value: To generate the proper password HASH, use
ihatemoney generate_password_hash and copy the output into the value of
ADMIN_PASSWORD.

ALLOW_PUBLIC_PROJECT_CREATION

If set to True, everyone can create a project without entering the admin
password. If set to False, the password needs to be entered (and as such,
defined in the settings).

	Default value: : True.

ACTIVATE_ADMIN_DASHBOARD

If set to True, the dashboard will become accessible entering the admin
password, if set to True, a non empty ADMIN_PASSWORD needs to be set.

	Default value: False

APPLICATION_ROOT

If empty, ihatemoney will be served at domain root (e.g: http://domain.tld),
if set to "somestring", it will be served from a “folder”
(e.g: http://domain.tld/somestring).

	Default value: "" (empty string)

BABEL_DEFAULT_TIMEZONE

The timezone that will be used to convert date and time when displaying them
to the user (all times are always stored in UTC internally).
If not set, it will default to the timezone configured on the Operating System
of the server running ihatemoney, which may or may not be what you want.

	Default value: unset (use the timezone of the server Operating System)

	Production value: Set to the timezone of your expected users, with a
format such as "Europe/Paris". See `this list of TZ database names`_
for a complete list.

Note: this setting is actually interpreted by Flask-Babel, see the
Flask-Babel guide for formatting dates [https://pythonhosted.org/Flask-Babel/#formatting-dates] for details.

ENABLE_CAPTCHA

It is possible to add a simple captcha in order to filter out spammer bots on the form creation.
In order to do so, you just have to set ENABLE_CAPTCHA = True.

Configuring emails sending

By default, Ihatemoney sends emails using a local SMTP server, but it’s
possible to configure it to act differently, thanks to the great
Flask-Mail project [https://pythonhosted.org/flask-mail/#configuring-flask-mail]

	MAIL_SERVER : default ‘localhost’

	MAIL_PORT : default 25

	MAIL_USE_TLS : default False

	MAIL_USE_SSL : default False

	MAIL_DEBUG : default app.debug

	MAIL_USERNAME : default None

	MAIL_PASSWORD : default None

	DEFAULT_MAIL_SENDER : default None

Upgrading

We keep a ChangeLog [https://github.com/spiral-project/ihatemoney/blob/master/CHANGELOG.rst]. Read
it before upgrading.

Ihatemoney follows semantic versioning [http://semver.org/]. So minor/patch
upgrades can be done blindly.

General procedure

(sufficient for minor/patch upgrades)

	From the virtual environment (if any):

pip install -U ihatemoney

	Restart supervisor, or Apache, depending on your setup.

You may also want to set new configuration variables (if any). They are
mentioned in the ChangeLog [https://github.com/spiral-project/ihatemoney/blob/master/CHANGELOG.rst], but
this is not required for minor/patch upgrades, a safe default will be used
automatically.

Version-specific instructions

(must read for major upgrades)

When upgrading from a major version to another, you must follow special
instructions:

4.x → 5.x

Switch to a supported version of Python

Note

If you are already using Python ≥ 3.6, you can skip this section, no
special action is required.

If you were running IHateMoney using Python < 3.6, you must, before upgrading:

	Ensure to have a Python ≥ 3.6 available on your system

	Rebuild your virtual environment (if any). It will not alter your database nor configuration. For example, if your virtual environment is in /home/john/ihatemoney/:

rm -rf /home/john/ihatemoney
pyhton3 -m venv /home/john/ihatemoney
source /home/john/ihatemoney/bin/activate

You might need to pip install additional dependencies if you are using one
or several of the following deployment options :

	Gunicorn (Nginx)

	MariaDB

	PostgreSQL

If so, pick the pip commands to use in the relevant section(s) of
Installation.

Then follow General procedure from step 1. in order to complete the update.

Disable session cookie security if running over plain HTTP

Note

If you are running Ihatemoney over HTTPS, no special action is required.

Session cookies are now marked “secure” by default to increase security.

If you run Ihatemoney over plain HTTP, you need to explicitly disable this security
feature by setting SESSION_COOKIE_SECURE to False, see Configuration.

Switch to MariaDB >= 10.3.2 instead of MySQL

Note

If you are using SQLite or PostgreSQL, you can skip this section, no
special action is required.

If you were running IHateMoney with MySQL, you must switch to MariaDB.
MySQL is no longer a supported database option.

In addition, the minimum supported version of MariaDB is 10.3.2.
See this MySQL / MariaDB issue [https://github.com/spiral-project/ihatemoney/issues/632]
for details.

To upgrade:

	Ensure you have a MariaDB server installed and configured, and that its
version is at least 10.3.2.

	Copy your database from MySQL to MariaDB.

	Ensure that IHateMoney is correctly configured to use your MariaDB database,
see Configuration.

Then follow General procedure from step 1. in order to complete the update.

2.x → 3.x

Sentry support has been removed. Sorry if you used it.

Appart from that, General procedure applies.

1.x → 2.x

Switch from git installation to pip installation

The recommended installation method is now using pip. Git is now intended for
development only.

Warning

Be extra careful to not remove your sqlite database nor your
settings file, if they are stored inside the cloned folder.

	Delete the cloned folder

Note

If you are using a virtual environment, then the following commands should be run inside it (see
Prepare virtual environment (recommended)).

	Install ihatemoney with pip:

pip install ihatemoney

	Fix your configuration file (paths have changed), depending on
the software you use in your setup:

	gunicorn: ihatemoney generate-config gunicorn.conf.py (nothing
critical changed, keeping your old config might be fine)

	supervisor : ihatemoney generate-config supervisord.conf (mind the
command= line)

	apache: ihatemoney generate-config apache-vhost.conf (mind the
WSGIDaemonProcess, WSGIScriptAlias and Alias lines)

	Restart Apache or Supervisor, depending on your setup.

Upgrade ADMIN_PASSWORD to its hashed form

Note

Not required if you are not using the ADMIN_PASSWORD feature.

	ihatemoney generate_password_hash will do the hashing job for you, just put

	its result in the ADMIN_PASSWORD var from your ihatemoney.cfg and
restart apache or the supervisor job.

The REST API

All of what’s possible to do with the website is also possible via a web API.
This document explains how the API is organized and how you can query it.

The main supported data format is JSON. When using POST or PUT, you can
either pass data encoded in JSON or in application/x-www-form-urlencoded
format.

Overall organisation

You can access three different things: projects, members and bills. You can
also get the balance for a project.

The examples here are using curl, feel free to use whatever you want to do the
same thing, curl is not a requirement.

Authentication

To interact with bills and members, and for any action other than creating a new
project, you need to be authenticated. The simplest way to authenticate is to use
“basic” HTTP authentication with the project ID and private code.

For instance, to obtain information about a project, using curl:

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo

It is also possible to generate a token, and then use it later to authenticate
instead of basic auth.
For instance, start by generating the token (of course, you need to authenticate):

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo/token
{"token": "WyJ0ZXN0Il0.Rt04fNMmxp9YslCRq8hB6jE9s1Q"}

Make sure to store this token securely: it allows full access to the project.
For instance, use it to obtain information about the project (replace PROJECT_TOKEN with
the actual token):

$ curl --oauth2-bearer "PROJECT_TOKEN" https://ihatemoney.org/api/projects/demo

This works by sending the token in the Authorization header, so doing it “manually” with curl
looks like:

$ curl --header "Authorization: Bearer PROJECT_TOKEN" https://ihatemoney.org/api/projects/demo

This token can also be used to authenticate for a project on the web interface, which can be useful
to generate invitation links. You would simply create an URL of the form:

https://ihatemoney.org/demo/join/PROJECT_TOKEN

Such a link grants full access to the project associated with the token.

Projects

You can’t list projects, for security reasons. But you can create, update and
delete one directly from the API.

The URLs are /api/projects and /api/projects/<identifier>.

Creating a project

A project needs the following arguments:

	name: the project name (string)

	id: the project identifier (string without special chars or spaces)

	password: the project password / secret code (string)

	contact_email: the contact email (string)

Optional arguments:

	default_currency: the default currency to use for a multi-currency project,
in ISO 4217 format. Bills are converted to this currency for operations like balance
or statistics. Default value: XXX (no currency).

$ curl -X POST https://ihatemoney.org/api/projects \
-d 'name=yay&id=yay&password=yay&contact_email=yay@notmyidea.org'
"yay"

As you can see, the API returns the identifier of the project.

Getting information about the project

Getting information about the project:

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo
{
 "id": "demo",
 "name": "demonstration",
 "contact_email": "demo@notmyidea.org",
 "default_currency": "XXX",
 "members": [{"id": 11515, "name": "f", "weight": 1.0, "activated": true, "balance": 0},
 {"id": 11531, "name": "g", "weight": 1.0, "activated": true, "balance": 0},
 {"id": 11532, "name": "peter", "weight": 1.0, "activated": true, "balance": 5.0},
 {"id": 11558, "name": "Monkey", "weight": 1.0, "activated": true, "balance": 0},
 {"id": 11559, "name": "GG", "weight": 1.0, "activated": true, "balance": -5.0}]
}

Updating a project

Updating a project is done with the PUT verb:

$ curl --basic -u yay:yay -X PUT\
https://ihatemoney.org/api/projects/yay -d\
'name=yay&id=yay&password=yay&contact_email=youpi@notmyidea.org'

Deleting a project

Just send a DELETE request ont the project URI

$ curl --basic -u demo:demo -X DELETE https://ihatemoney.org/api/projects/demo

Members

You can get all the members with a GET on /api/projects/<id>/members:

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo/members\
[{"weight": 1, "activated": true, "id": 31, "name": "Arnaud"},
 {"weight": 1, "activated": true, "id": 32, "name": "Alexis"},
 {"weight": 1, "activated": true, "id": 33, "name": "Olivier"},
 {"weight": 1, "activated": true, "id": 34, "name": "Fred"}]

Add a member with a POST request on /api/projects/<id>/members:

$ curl --basic -u demo:demo -X POST\
https://ihatemoney.org/api/projects/demo/members -d 'name=tatayoyo'
35

You can also PUT a new version of a member (changing its name):

$ curl --basic -u demo:demo -X PUT\
https://ihatemoney.org/api/projects/demo/members/36\
-d 'name=yeaaaaah'
{"activated": true, "id": 36, "name": "yeaaaaah", "weight": 1}

Delete a member with a DELETE request on
/api/projects/<id>/members/<member-id>:

$ curl --basic -u demo:demo -X DELETE\
https://ihatemoney.org/api/projects/demo/members/35
"OK

Bills

You can get the list of bills by doing a GET on
/api/projects/<id>/bills

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo/bills

Or get a specific bill by ID:

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo/bills/42
{
 "id": 42,
 "payer_id": 11,
 "owers": [
 {
 "id": 22,
 "name": "Alexis",
 "weight": 1,
 "activated": true
 }
],
 "amount": 100,
 "date": "2020-12-24",
 "creation_date": "2021-01-13",
 "what": "Raclette du nouvel an",
 "external_link": "",
 "original_currency": "XXX",
 "converted_amount": 100
}

amount is expressed in the original_currency of the bill, while
converted_amount is expressed in the project default_currency.
Here, they are the same.

Add a bill with a POST query on /api/projects/<id>/bills. You need the
following required parameters:

	what: what has been paid (string)

	payer: paid by who? (id)

	payed_for: for who ? (id). To set multiple id, simply pass
the parameter multiple times (x-www-form-urlencoded) or pass a list of id (JSON).

	amount: amount payed (float)

And optional parameters:

	date: the date of the bill (yyyy-mm-dd format). Defaults to current date
if not provided.

	original_currency: the currency in which amount has been paid (ISO 4217 code).
Only makes sense for a project with currencies. Defaults to the project default_currency.

	external_link: an optional URL associated with the bill.

Returns the id of the created bill

$ curl --basic -u demo:demo -X POST\
https://ihatemoney.org/api/projects/demo/bills\
-d "date=2011-09-10&what=raclette&payer=1&payed_for=3&payed_for=5&amount=200"
80

You can also PUT a new version of the bill at
/api/projects/<id>/bills/<bill-id>:

$ curl --basic -u demo:demo -X PUT\
https://ihatemoney.org/api/projects/demo/bills/80\
-d "date=2011-09-10&what=raclette&payer=1&payed_for=3&payed_for=5&payed_for=1&amount=250"
80

And you can of course DELETE them at
/api/projects/<id>/bills/<bill-id>:

$ curl --basic -u demo:demo -X DELETE\
https://ihatemoney.org/api/projects/demo/bills/80\
"OK"

Statistics

You can get some project stats with a GET on
/api/projects/<id>/statistics:

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo/statistics
[
 {
 "member": {"activated": true, "id": 1, "name": "alexis", "weight": 1.0},
 "paid": 25.5,
 "spent": 15,
 "balance": 10.5
 },
 {
 "member": {"activated": true, "id": 2, "name": "fred", "weight": 1.0},
 "paid": 5,
 "spent": 15.5,
 "balance": -10.5
 }
]

Security

Ihatemoney does not have user accounts. Instead, authorization is based around
shared projects: this is a bit unusual and deserves some explanation about
the security model.

First of all, Ihatemoney fundamentally assumes that all members of a project trust
each other. Otherwise, you would probably not share expenses in the first place!

That being said, there are a few mechanisms to limit the impact of a malicious
member and to manage changes in membership (e.g. ensuring that a previous member
can no longer access the project). But these mechanisms don’t prevent a malicious member
from breaking things in your project!

Security model

A project has three main parameters when it comes to security:

	project identifier (equivalent to a “login”)

	private code (equivalent to a “password”)

	token (cryptographically derived from the private code)

Somebody with the private code can:

	access the project through the web interface or the API

	add, modify or remove bills

	view project history

	change basic settings of the project

	change the email address associated to the project

	change the private code of the project

Somebody with the token can manipulate the project through the API to
do essentially the same thing:

	access the project

	add, modify or remove bills

	change basic settings of the project

	change the email address associated to the project

	change the private code of the project

The token can also be used to build “invitation links”. These links allow
to login on the web interface without knowing the private code, see below.

Giving access to a project

There are two main ways to give access to a project to a new person:

	share the project identifier and private code using any out-of-band
communication method

	share an invitation link that allows to login on the web interface
without knowing the private code

The second method is interesting because it does not reveal the private code.
In particular, somebody that is logged-in through the invitation link will not be able
to change the private code, because the web interface requires a confirmation
of the existing private code to change it.
However, a motivated person could extract the token from the invitation link,
use it to access the project through the API, and change the private code through
the API.

Removing access to a project

If a person should no longer be able to access a project, the only way is to change
the private code.

This will also automatically change the token: old invitation links won’t
work anymore, and anybody with the old token will no longer be able to access
the project through the API.

Recovering access to a project

If the private code is no longer known, the creator of the project can still recover
access. He/she must have provided an email address when creating the project,
and Ihatemoney can send a reset link to this email address (classical “forgot
your password” functionality).

Note, however, that somebody with the private code could have changed the email
address in the settings at any time.

Recovering lost data

A member can delete or change bills. There is no way to revert such actions for now.
However, each project has an history page that lists all actions done on the project.
This history can be used to manually correct previous changes.

Note, however, that the history feature is primarily meant to protect against mistakes:
a malicious member can easily remove all entries from the history!

The best defense against this kind of issues is… backups! All data for a project can be
exported through the settings page or through the API.

Contributing

How to contribute

You would like to contribute? First, thanks a bunch! This project is a small
project with just a few people behind it, so any help is appreciated!

There are different ways to help us, regarding if you are a designer,
a developer or an user.

As a developer

If you want to contribute code, you can write it and then issue a pull request
on github. To get started, please read Set up a dev environment and
Contributing as a developer.

As a designer / Front-end developer

Feel free to provide mockups, or to involve yourself in the discussions
happening on the GitHub issue tracker. All ideas are welcome. Of course, if you
know how to implement them, feel free to fork and make a pull request.

As a translator

If you’re able to translate Ihatemoney in your own language,
head over to the website we use for translations [https://hosted.weblate.org/projects/i-hate-money/i-hate-money/]
and start translating.

All the heavy lifting will be done automatically, and your strings will
eventually be integrated.

Once a language is ready to be integrated, add it to the
SUPPORTED_LANGUAGES list, in ihatemoney/default_settings.py.

End-user

You are using the application and found a bug? You have some ideas about how to
improve the project? Please tell us by filling a new issue [https://github.com/spiral-project/ihatemoney/issues].
Or, if you prefer, you can send me an e-mail to alexis@notmyidea.org and I
will update the issue tracker with your feedback.

Thanks again!

Set up a dev environment

You must develop on top of the Git master branch:

git clone https://github.com/spiral-project/ihatemoney.git

Then you need to build your dev environment. Choose your way…

The quick way

If System Requirements are fulfilled, you can just issue:

make serve

It will setup a Virtual environment [https://docs.python.org/3/tutorial/venv.html],
install dependencies, and run the test server.

The hard way

Alternatively, you can use pip to install dependencies yourself. That would be:

pip install -e .

And then run the application:

cd ihatemoney
python run.py

Accessing dev server

In any case, you can point your browser at http://localhost:5000.
It’s as simple as that!

Updating

In case you want to update to newer versions (from Git), you can just run the “update” command:

make update

Useful settings

It is better to actually turn the debugging mode on when you’re developing.
You can create a settings.cfg file, with the following content:

DEBUG = True
SQLACHEMY_ECHO = DEBUG

Then before running the application, declare its path with

export IHATEMONEY_SETTINGS_FILE_PATH="$(pwd)/settings.cfg"

You can also set the TESTING flag to True so no mails are sent
(and no exception is raised) while you’re on development mode.

In some cases, you may need to disable secure cookies by setting
SESSION_COOKIE_SECURE to False. This is needed if you
access your dev server over the network: with the default value
of SESSION_COOKIE_SECURE, the browser will refuse to send
the session cookie over insecure HTTP, so many features of Ihatemoney
won’t work (project login, language change, etc).

Contributing as a developer

All code contributions should be submitted as Pull Requests on the
github project [https://github.com/spiral-project/ihatemoney].

Below are some points that you should check to help you prepare your Pull Request.

Running tests

Please, think about updating and running the tests before asking for a pull request
as it will help us to maintain the code clean and running.

To run the tests:

make test

Tests can be edited in ihatemoney/tests/tests.py. If some test cases fail because
of your changes, first check whether your code correctly handle these cases.
If you are confident that your code is correct and that the test cases simply need
to be updated to match your changes, update the test cases and send them as part of
your pull request.

If you are introducing a new feature, you need to either add tests to existing classes,
or add a new class (if your new feature is significantly different from existing code).

Formatting code

We are using black [https://black.readthedocs.io/en/stable/] and
isort [https://timothycrosley.github.io/isort/] formatters for all the Python
files in this project. Be sure to run it locally on your files.
To do so, just run:

make black isort

You can also integrate them with your dev environment (as a format-on-save
hook, for instance).

Creating database migrations

In case you need to modify the database schema, first make sure that you have
an up-to-date database by running the dev server at least once (the quick way
or the hard way, see above). The dev server applies all existing migrations
when starting up.

You can now update the models in ihatemoney/models.py. Then run the following
command to create a new database revision file:

make create-database-revision

If your changes are simple enough, the generated script will be populated with
the necessary migrations steps. You can view and edit the generated script, which
is useful to review that the expected model changes have been properly detected.
Usually the auto-detection works well in most cases, but you can of course edit the
script to fix small issues. You could also edit the script to add data migrations.

When you are done with your changes, don’t forget to add the migration script to
your final git commit!

If the migration script looks completely wrong, remove the script and start again
with an empty database. The simplest way is to remove or rename the dev database
located at /tmp/ihatemoney.db, and run the dev server at least once.

For complex migrations, it is recommended to start from an empty revision file
which can be created with the following command:

make create-empty-database-revision

You then need to write the migration steps yourself.

How to build the documentation ?

The documentation is using sphinx [http://www.sphinx-doc.org/en/stable/] and
its source is located inside the docs folder [https://github.com/spiral-project/ihatemoney/tree/master/docs].

Install doc dependencies (within the virtual environment, if any):

pip install -e .[doc]

And to produce a HTML doc in the docs/_output folder:

cd docs/
make html

How to release?

In order to prepare a new release, we are following the following steps:

	Merge remaining pull requests;

	Update CHANGELOG.rst with the last changes;

	Update CONTRIBUTORS;

	Update known good versions of dependencies in setup.cfg

	If needed, recompress assets. It requires zopflipng:

make compress-assets

	Build the translations:

make update-translations
make build-translations

Once this is done, use the “release” instruction:

make release

And the new version should be published on PyPI.

Note

The above command will prompt for version number, handle
CHANGELOG.rst and setup.cfg updates, package creation,
pypi upload. It will prompt you before each step to get your consent.

Index

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 I hate money

 		
 Installation

 		
 Requirements

 		
 Prepare virtual environment (recommended)

 		
 Install

 		
 Test it

 		
 Configure database with MariaDB (optional)

 		
 Configure database with PostgreSQL (optional)

 		
 Deploy it

 		
 Whatever your installation option is…

 		
 With Apache and mod_wsgi

 		
 With Nginx, Gunicorn and Supervisord/systemd

 		
 With Docker

 		
 Configuration

 		
 Configuration files

 		
 SQLALCHEMY_DATABASE_URI

 		
 SECRET_KEY

 		
 SESSION_COOKIE_SECURE

 		
 MAIL_DEFAULT_SENDER

 		
 ACTIVATE_DEMO_PROJECT

 		
 ADMIN_PASSWORD

 		
 ALLOW_PUBLIC_PROJECT_CREATION

 		
 ACTIVATE_ADMIN_DASHBOARD

 		
 APPLICATION_ROOT

 		
 BABEL_DEFAULT_TIMEZONE

 		
 ENABLE_CAPTCHA

 		
 Configuring emails sending

 		
 Upgrading

 		
 General procedure

 		
 Version-specific instructions

 		
 4.x → 5.x

 		
 2.x → 3.x

 		
 1.x → 2.x

 		
 The REST API

 		
 Overall organisation

 		
 Authentication

 		
 Projects

 		
 Members

 		
 Bills

 		
 Statistics

 		
 Security

 		
 Security model

 		
 Giving access to a project

 		
 Removing access to a project

 		
 Recovering access to a project

 		
 Recovering lost data

 		
 Contributing

 		
 How to contribute

 		
 As a developer

 		
 As a designer / Front-end developer

 		
 As a translator

 		
 End-user

 		
 Set up a dev environment

 		
 The quick way

 		
 The hard way

 		
 Accessing dev server

 		
 Updating

 		
 Useful settings

 		
 Contributing as a developer

 		
 Running tests

 		
 Formatting code

 		
 Creating database migrations

 		
 How to build the documentation ?

 		
 How to release?

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

