
I hate money
Release 1.0

Nov 01, 2021





Contents

1 Table of content 3

2 Indices and tables 17

i



ii



I hate money, Release 1.0

«I hate money» is a web application made to ease shared budget management. It keeps track of who bought what,
when, and for whom; and helps to settle the bills.

I hate money is written in python, using the flask framework. It’s developped with ease of use in mind, and is trying
to keep things simple. Hope you (will) like it!

Contents 1

https://palletsprojects.com/p/flask/


I hate money, Release 1.0

2 Contents



CHAPTER 1

Table of content

1.1 Installation

We lack some knowledge about packaging to make Ihatemoney installable on mainstream Linux distributions. If you
want to give us a hand on the topic, please check-out the issue about debian packaging.

If you are using Yunohost (a server operating system aiming to make self-hosting accessible to anyone), you can use
the Ihatemoney package.

Otherwise, follow these instructions to install it manually:

1.1.1 Requirements

«Ihatemoney» depends on:

• Python: either 2.7, 3.4, 3.5, 3.6 will work.

• A Backend: to choose among MySQL, PostgreSQL, SQLite or Memory.

• Virtualenv (recommended): virtualenv package under Debian/Ubuntu.

We recommend to use virtualenv but it will work without if you prefer.

If wondering about the backend, SQLite is the simplest and will work fine for most small to medium setups.

Note: If curious, source config templates can be found in the project git repository.

1.1.2 Prepare virtualenv (recommended)

Choose an installation path, here /home/john/ihatemoney.

Create a virtualenv:

3

https://github.com/spiral-project/ihatemoney/issues/227
https://github.com/YunoHost-Apps/ihatemoney_ynh
https://pypi.python.org/pypi/virtualenv
https://github.com/spiral-project/ihatemoney/tree/master/ihatemoney/conf-templates


I hate money, Release 1.0

virtualenv -p /usr/bin/python3 /home/john/ihatemoney

Activate the virtualenv:

source /home/john/ihatemoney/bin/activate

Note: You will have to re-issue that source command if you open a new terminal.

1.1.3 Install

Install the latest release with pip:

pip install ihatemoney

1.1.4 Test it

Once installed, you can start a test server:

ihatemoney runserver

And point your browser at http://localhost:5000.

1.1.5 Configure database with MySQL/MariaDB (optional)

Note: Only required if you use MySQL/MariaDB.

1. Install PyMySQL dependencies. On Debian or Ubuntu, that would be:

apt install python3-dev libssl-dev

2. Install PyMySQL (within your virtualenv):

pip install 'PyMySQL>=0.9,<0.10'

3. Create an empty database and a database user

4. Configure SQLALCHEMY_DATABASE_URI accordingly

1.1.6 Configure database with PostgreSQL (optional)

Note: Only required if you use Postgresql.

1. Install python driver for PostgreSQL (from within your virtualenv):

pip install psycopg2

2. Configure SQLALCHEMY_DATABASE_URI accordingly

4 Chapter 1. Table of content

http://localhost:5000


I hate money, Release 1.0

1.1.7 Deploy it

Now, if you want to deploy it on your own server, you have many options. Three of them are documented at the
moment.

Of course, if you want to contribute another configuration, feel free to open a pull-request against this repository!

Whatever your installation option is. . .

1. Initialize the ihatemoney directories:

mkdir /etc/ihatemoney /var/lib/ihatemoney

2. Generate settings:

ihatemoney generate-config ihatemoney.cfg > /etc/ihatemoney/ihatemoney.cfg
chmod 740 /etc/ihatemoney/ihatemoney.cfg

You probably want to adjust /etc/ihatemoney/ihatemoney.cfg contents, you may do it later, see Configu-
ration.

With Apache and mod_wsgi

1. Fix permissions (considering www-data is the user running apache):

chgrp www-data /etc/ihatemoney/ihatemoney.cfg
chown www-data /var/lib/ihatemoney

2. Install Apache and mod_wsgi : libapache2-mod-wsgi(-py3) for Debian based and mod_wsgi for
RedHat based distributions

3. Create an Apache virtual host, the command ihatemoney generate-config apache-vhost.conf
will output a good starting point (read and adapt it).

4. Activate the virtual host if needed and restart Apache

With Nginx, Gunicorn and Supervisord/systemd

Install Gunicorn:

pip install gunicorn

1. Create a dedicated unix user (here called ihatemoney), required dirs, and fix permissions:

useradd ihatemoney
chown ihatemoney /var/lib/ihatemoney/
chgrp ihatemoney /etc/ihatemoney/ihatemoney.cfg

2. Create gunicorn config file

ihatemoney generate-config gunicorn.conf.py > /etc/ihatemoney/gunicorn.conf.py

3. Setup Supervisord or systemd

• To use Supervisord, create supervisor config file

1.1. Installation 5



I hate money, Release 1.0

ihatemoney generate-config supervisord.conf > /etc/supervisor/conf.d/
→˓ihatemoney.conf

• To use systemd services, create ihatemoney.service in2:

[Unit]
Description=I hate money
Requires=network.target postgresql.service
After=network.target postgresql.service

[Service]
Type=simple
User=ihatemoney
ExecStart=/home/john/ihatemoney/bin/gunicorn -c /etc/ihatemoney/gunicorn.conf.
→˓py ihatemoney.wsgi:application
SyslogIdentifier=ihatemoney

[Install]
WantedBy=multi-user.target

Obviously, adapt the ExecStart path for your installation folder.

If you use SQLite as database: remove mentions of postgresql.service in ihatemoney.
service. If you use MySQL or MariaDB as database: replace mentions of postgresql.service
by mysql.service or mariadb.service in ihatemoney.service.

Then reload systemd, enable and start ihatemoney:

systemctl daemon-reload
systemctl enable ihatemoney.service
systemctl start ihatemoney.service

4. Copy (and adapt) output of ihatemoney generate-config nginx.conf with your nginx vhosts1

5. Reload nginx (and supervisord if you use it). It should be working ;)

With Docker

Build the image:

docker build -t ihatemoney --build-arg INSTALL_FROM_PYPI=True .

Start a daemonized Ihatemoney container:

docker run -d -p 8000:8000 ihatemoney

Ihatemoney is now available on http://localhost:8000.

All Ihatemoney settings can be passed with -e parameters e.g. with a secure SECRET_KEY, an external mail server
and an external database:

docker run -d -p 8000:8000 \
-e SECRET_KEY="supersecure" \
-e SQLALCHEMY_DATABASE_URI="mysql+pymysql://user:pass@172.17.0.5/ihm" \
-e MAIL_SERVER=smtp.gmail.com \

2 /etc/systemd/system/ihatemoney.service path may change depending on your distribution.
1 typically, /etc/nginx/conf.d/ or /etc/nginx/sites-available, depending on your distribution.

6 Chapter 1. Table of content

http://localhost:8000


I hate money, Release 1.0

-e MAIL_PORT=465 \
-e MAIL_USERNAME=your-email@gmail.com \
-e MAIL_PASSWORD=your-password \
-e MAIL_USE_SSL=True \
ihatemoney

A volume can also be specified to persist the default database file:

docker run -d -p 8000:8000 -v /host/path/to/database:/database ihatemoney

Additional gunicorn parameters can be passed using the docker CMD parameter. For example, use the following
command to add more gunicorn workers:

docker run -d -p 8000:8000 ihatemoney -w 3

1.2 Configuration

“ihatemoney” relies on a configuration file. If you run the application for the first time, you will need to take a few
moments to configure the application properly.

The default values given here are those for the development mode. To know defaults on your deployed instance, simply
look at your ihatemoney.cfg file.

“Production values” are the recommended values for use in production.

1.2.1 SQLALCHEMY_DATABASE_URI

Specifies the type of backend to use and its location. More information on the format used can be found on the
SQLAlchemy documentation.

• Default value: sqlite:///tmp/ihatemoney.db

• Production value: Set it to some path on your disk. Typically sqlite:///home/ihatemoney/
ihatemoney.db. Do not store it under /tmp as this folder is cleared at each boot.

If you’re using PostgreSQL, Your client must use utf8. Unfortunately, PostgreSQL default is to use ASCII. Either
change your client settings, or specify the encoding by appending ?client_encoding=utf8 to the connection
string.

1.2.2 SECRET_KEY

The secret key used to encrypt the cookies.

• Production value: ihatemoney conf-example ihatemoney.cfg sets it to something random, which is good.

1.2.3 MAIL_DEFAULT_SENDER

A python tuple describing the name and email address to use when sending emails.

• Default value: ("Budget manager", "budget@notmyidea.org")

• Production value: Any tuple you want.

1.2. Configuration 7

http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls
http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls


I hate money, Release 1.0

1.2.4 ACTIVATE_DEMO_PROJECT

If set to True, a demo project will be available on the frontpage.

• Default value: True

• Production value: Usually, you will want to set it to False for a private instance.

1.2.5 ADMIN_PASSWORD

Hashed password to access protected endpoints. If left empty, all administrative tasks are disabled.

• Default value: "" (empty string)

• Production value: To generate the proper password HASH, use ihatemoney
generate_password_hash and copy the output into the value of ADMIN_PASSWORD.

1.2.6 ALLOW_PUBLIC_PROJECT_CREATION

If set to True, everyone can create a project without entering the admin password. If set to False, the password
needs to be entered (and as such, defined in the settings).

• Default value: : True.

1.2.7 ACTIVATE_ADMIN_DASHBOARD

If set to True, the dashboard will become accessible entering the admin password, if set to True, a non empty AD-
MIN_PASSWORD needs to be set.

• Default value: False

1.2.8 APPLICATION_ROOT

If empty, ihatemoney will be served at domain root (e.g: http://domain.tld), if set to "somestring", it will be
served from a “folder” (e.g: http://domain.tld/somestring).

• Default value: "" (empty string)

1.2.9 Configuring emails sending

By default, Ihatemoney sends emails using a local SMTP server, but it’s possible to configure it to act differently,
thanks to the great Flask-Mail project

• MAIL_SERVER : default ‘localhost’

• MAIL_PORT : default 25

• MAIL_USE_TLS : default False

• MAIL_USE_SSL : default False

• MAIL_DEBUG : default app.debug

• MAIL_USERNAME : default None

• MAIL_PASSWORD : default None

8 Chapter 1. Table of content

https://pythonhosted.org/flask-mail/#configuring-flask-mail


I hate money, Release 1.0

• DEFAULT_MAIL_SENDER : default None

1.2.10 Using an alternate settings path

You can put your settings file where you want, and pass its path to the application using the
IHATEMONEY_SETTINGS_FILE_PATH environment variable.

For instance

export IHATEMONEY_SETTINGS_FILE_PATH="/path/to/your/conf/file.cfg"

1.3 Upgrading

We keep a ChangeLog. Read it before upgrading.

Ihatemoney follows semantic versioning. So minor/patch upgrades can be done blindly.

1.3.1 General procedure

(sufficient for minor/patch upgrades)

1. From the virtualenv (if any):

pip install -U ihatemoney

2. Restart supervisor, or Apache, depending on your setup.

You may also want to set new configuration variables (if any). They are mentioned in the ChangeLog, but this is not
required for minor/patch upgrades, a safe default will be used automatically.

1.3.2 Version-specific instructions

(must read for major upgrades)

When upgrading from a major version to another, you must follow special instructions:

2.x → 3.x

Sentry support has been removed. Sorry if you used it.

Appart from that, General procedure applies.

1.x → 2.x

Switch from git installation to pip installation

The recommended installation method is now using pip. Git is now intended for development only.

Warning: Be extra careful to not remove your sqlite database nor your settings file, if they are stored inside the
cloned folder.

1.3. Upgrading 9

https://github.com/spiral-project/ihatemoney/blob/master/CHANGELOG.rst
http://semver.org/
https://github.com/spiral-project/ihatemoney/blob/master/CHANGELOG.rst


I hate money, Release 1.0

1. Delete the cloned folder

Note: If you are using a virtualenv, then the following commands should be run inside it (see Prepare virtualenv
(recommended)).

2. Install ihatemoney with pip:

pip install ihatemoney

3. Fix your configuration file (paths have changed), depending on the software you use in your setup:

• gunicorn: ihatemoney generate-config gunicorn.conf.py (nothing critical changed,
keeping your old config might be fine)

• supervisor : ihatemoney generate-config supervisord.conf (mind the command= line)

• apache: ihatemoney generate-config apache-vhost.conf (mind the
WSGIDaemonProcess, WSGIScriptAlias and Alias lines)

4. Restart Apache or Supervisor, depending on your setup.

Upgrade ADMIN_PASSWORD to its hashed form

Note: Not required if you are not using the ADMIN_PASSWORD feature.

ihatemoney generate_password_hash will do the hashing job for you, just put its result in the
ADMIN_PASSWORD var from your ihatemoney.cfg and restart apache or the supervisor job.

1.4 The REST API

All of what’s possible to do with the website is also possible via a web API. This document explains how the API is
organized and how you can query it.

The only supported data format is JSON.

1.4.1 Overall organisation

You can access three different things: projects, members and bills. You can also get the balance for a project.

The examples here are using curl, feel free to use whatever you want to do the same thing, curl is not a requirement.

Authentication

To interact with bills and members, and to do something else than creating a project, you need to be authenticated.
The only way to authenticate yourself currently is using the “basic” HTTP authentication.

For instance, here is how to see the what’s in a project, using curl:

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo

10 Chapter 1. Table of content



I hate money, Release 1.0

Projects

You can’t list projects, for security reasons. But you can create, update and delete one directly from the API.

The URLs are /api/projects and /api/projects/<identifier>.

Creating a project

A project needs the following arguments:

• name: The project name (string)

• id: the project identifier (string without special chars or spaces)

• password: the project password / secret code (string)

• contact_email: the contact email

$ curl -X POST https://ihatemoney.org/api/projects \
-d 'name=yay&id=yay&password=yay&contact_email=yay@notmyidea.org'
"yay"

As you can see, the API returns the identifier of the project

Getting information about the project

Getting information about the project:

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo
{

"name": "demonstration",
"contact_email": "demo@notmyidea.org",
"password": "demo",
"id": "demo",
"active_members": [{"activated": true, "weight": 1, "id": 31, "name": "Arnaud"},

{"activated": true, "weight": 1, "id": 32, "name": "Alexis"},
{"activated": true, "weight": 1, "id": 33, "name": "Olivier"},
{"activated": true, "weight": 1, "id": 34, "name": "Fred"}],

"members": [{"activated": true, "weight": 1, "id": 31, "name": "Arnaud"},
{"activated": true, "weight": 1, "id": 32, "name": "Alexis"},
{"activated": true, "weight": 1, "id": 33, "name": "Olivier"},
{"activated": true, "weight": 1, "id": 34, "name": "Fred"}],

"balance": {
"31": 6.0,
"32": 6.0
"33": -6.0
"34": -6.0

}
}

Updating a project

Updating a project is done with the PUT verb:

1.4. The REST API 11



I hate money, Release 1.0

$ curl --basic -u yay:yay -X PUT\
https://ihatemoney.org/api/projects/yay -d\
'name=yay&id=yay&password=yay&contact_email=youpi@notmyidea.org'

Deleting a project

Just send a DELETE request ont the project URI

$ curl --basic -u demo:demo -X DELETE https://ihatemoney.org/api/projects/demo

Members

You can get all the members with a GET on /api/projects/<id>/members:

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo/members\
[{"weight": 1, "activated": true, "id": 31, "name": "Arnaud"},
{"weight": 1, "activated": true, "id": 32, "name": "Alexis"},
{"weight": 1, "activated": true, "id": 33, "name": "Olivier"},
{"weight": 1, "activated": true, "id": 34, "name": "Fred"}]

Add a member with a POST request on /api/projects/<id>/members:

$ curl --basic -u demo:demo -X POST\
https://ihatemoney.org/api/projects/demo/members -d 'name=tatayoyo'
35

You can also PUT a new version of a member (changing its name):

$ curl --basic -u demo:demo -X PUT\
https://ihatemoney.org/api/projects/demo/members/36\
-d 'name=yeaaaaah'
{"activated": true, "id": 36, "name": "yeaaaaah", "weight": 1}

Delete a member with a DELETE request on /api/projects/<id>/members/<member-id>:

$ curl --basic -u demo:demo -X DELETE\
https://ihatemoney.org/api/projects/demo/members/35
"OK

Bills

You can get the list of bills by doing a GET on /api/projects/<id>/bills

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo/bills

Add a bill with a POST query on /api/projects/<id>/bills. you need the following params:

• date: the date of the bill; defaults to current date if not provided. (format is yyyy-mm-dd)

• what: what have been payed

• payer: by who ? (id)

• payed_for: for who ? (id, to set multiple id use a list, e.g. ["id1", "id2"])

12 Chapter 1. Table of content



I hate money, Release 1.0

• amount: amount payed

Returns the id of the created bill

$ curl --basic -u demo:demo -X POST\
https://ihatemoney.org/api/projects/demo/bills\
-d "date=2011-09-10&what=raclette&payer=31&payed_for=31&amount=200"
80

You can also PUT a new version of the bill at /api/projects/<id>/bills/<bill-id>:

$ curl --basic -u demo:demo -X PUT\
https://ihatemoney.org/api/projects/demo/bills/80\
-d "date=2011-09-10&what=raclette&payer=31&payed_for=31&amount=250"
80

And you can of course DELETE them at /api/projects/<id>/bills/<bill-id>:

$ curl --basic -u demo:demo -X DELETE\
https://ihatemoney.org/api/projects/demo/bills/80\
"OK"

Statistics

You can get some project stats with a GET on /api/projects/<id>/statistics:

$ curl --basic -u demo:demo https://ihatemoney.org/api/projects/demo/statistics
[

{
"balance": 12.5,
"member": {"activated": True, "id": 1, "name": "alexis", "weight": 1.0},
"paid": 25.0,
"spent": 12.5

},
{

"balance": -12.5,
"member": {"activated": True, "id": 2, "name": "fred", "weight": 1.0},
"paid": 0,
"spent": 12.5

}
]

1.5 Contributing

1.5.1 Setup a dev environment

You must develop on top of the git master branch:

git clone https://github.com/spiral-project/ihatemoney.git

Then you need to build your dev environments. Choose your way. . .

1.5. Contributing 13



I hate money, Release 1.0

The quick way

If System Requirements are fulfilled, you can just issue:

make serve

It will setup a virtualenv, install dependencies, and run the test server.

The hard way

Alternatively, you can use pip to install dependencies yourself. That would be:

pip install -e .

And then run the application:

cd ihatemoney
python run.py

Accessing dev server

In any case, you can point your browser at http://localhost:5000. It’s as simple as that!

Updating

In case you want to update to newer versions (from git), you can just run the “update” command:

make update

Create database migrations

In case you need to modify the database schema, first update the models in ihatemoney/models.py. Then run
the following command to create a new database revision file:

make create-database-revision

If your changes are simple enough, the generated script will be populated with the necessary migrations steps. You
can edit the generated script. eg: to add data migrations.

For complex migrations, it is recommended to start from an empty revision file which can be created with the following
command:

make create-empty-database-revision

Useful settings

It is better to actually turn the debugging mode on when you’re developing. You can create a settings.cfg file,
with the following content:

DEBUG = True
SQLACHEMY_ECHO = DEBUG

14 Chapter 1. Table of content

https://pypi.python.org/pypi/virtualenv
http://localhost:5000


I hate money, Release 1.0

You can also set the TESTING flag to True so no mails are sent (and no exception is raised) while you’re on develop-
ment mode. Then before running the application, declare its path with

export IHATEMONEY_SETTINGS_FILE_PATH="$(pwd)/settings.cfg"

1.5.2 How to contribute

You would like to contribute? First, thanks a bunch! This project is a small project with just a few people behind it, so
any help is appreciated!

There are different ways to help us, regarding if you are a designer, a developer or an user.

As a developer

If you want to contribute code, you can write it and then issue a pull request on github. Please, think about updating
and running the tests before asking for a pull request as it will help us to maintain the code clean and running.

To do so:

$ make test

As a designer / Front-end developer

Feel free to provide us mockups or to involve yourself into the discussions hapenning on the github issue tracker. All
ideas are welcome. Of course, if you know how to implement them, feel free to fork and make a pull request.

As a translator

Collect all new strings to translate:

make update-translations

Add missing translations to .po files inside translations/ dir using your favorite text editor.

Compile them into .mo files:

make build-translations

Commit both .mo and .po.

End-user

You are using the application and found a bug? You have some ideas about how to improve the project? Please tell us
by filling a new issue. Or, if you prefer, you can send me an email to alexis@notmyidea.org and I will update the issue
tracker with your feedback.

Thanks again!

1.5. Contributing 15

https://github.com/spiral-project/ihatemoney/issues


I hate money, Release 1.0

1.5.3 How to build the documentation ?

The documentation is using sphinx and its source is located inside the docs folder.

Install doc dependencies (within the virtualenv, if any):

pip install -r docs/requirements.txt

And to produce html doc in docs/_output folder:

cd docs/
make html

1.5.4 How to release?

In order to prepare a new release, we are following the following steps:

• Merge remaining pull requests;

• Update CHANGELOG.rst with the last changes;

• Update CONTRIBUTORS;

• Update known good versions of dependencies in setup.py;

• If needed, recompress assets. It requires zopflipng:

make compress-assets

• Build the translations:

make update-translations
make build-translations

Once this is done, use the “release” instruction:

make release

And the new version should be published on PyPI.

Note: The above command will prompt for version number, handle CHANGELOG.rst and setup.py updates,
package creation, pypi upload. It will prompt you before each step to get your consent.

16 Chapter 1. Table of content

http://www.sphinx-doc.org/en/stable/
https://github.com/spiral-project/ihatemoney/tree/master/docs


CHAPTER 2

Indices and tables

• genindex

• modindex

• search

17


	Table of content
	Indices and tables

